Computing Irreducible Representations of Finite Groups
نویسندگان
چکیده
We consider the bit-complexity of the problem stated in the title. Exact computations in algebraic number fields are performed symbolically. We present a polynomial-time algorithm to find a complete set of nonequivalent irreducible representations over the field of complex numbers of a finite group given by its multiplication table. In particular, it follows that some representative of each equivalence class of irreducible representations admits a polynomial-size description. We also consider the problem of decomposing a given representation 'V of the finite group G over an algebraic number field F into absolutely irreducible constituents. We are able to do this in deterministic polynomial time if 'V is given by the list of matrices {^(g) ', g 6 G} ; and in randomized (Las Vegas) polynomial time under the more concise input {'P'(g) ; g € S} , where S is a set of generators of G .
منابع مشابه
Convergence Rates of Random Walk on Irreducible Representations of Finite Groups
Random walk on the set of irreducible representations of a finite group is investigated. For the symmetric and general linear groups, a sharp convergence rate bound is obtained and a cutoff phenomenon is proved. As related results, an asymptotic description of Plancherel measure of the finite general linear groups is given, and a connection of these random walks with quantum computing is noted.
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملFast Fourier Transforms for Finite Inverse Semigroups
We extend the theory of fast Fourier transforms on finite groups to finite inverse semigroups. We use a general method for constructing the irreducible representations of a finite inverse semigroup to reduce the problem of computing its Fourier transform to the problems of computing Fourier transforms on its maximal subgroups and a fast zeta transform on its poset structure. We then exhibit exp...
متن کاملFast quantum algorithms for approximating the irreducible representations of groups
All representations of finite groups and compact linear groups can be expressed as unitary matrices given an appropriate choice of basis. This makes them natural candidates for implementation using quantum circuits. As shown here, the irreducible representations of the symmetric group Sn, the alternating group An, the unitary groups U(n) and SU(n), and the special orthogonal group SO(n) can eac...
متن کاملFinite p-groups with few non-linear irreducible character kernels
Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.
متن کامل